

Prof. Cristina Chaminade Economic History, LUSEM Lund University

The questions

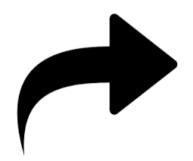
- o Why should you care about globalization of innovation? i.e. is Globalization of innovation old wine in new bottles or something really new?
- o What are the advantages of going global for innovation?
- o What does it take to globalize innovation activities?
- o What about the foreign technology driven investments in our region? Will the impact be negative?

Outline

Presentation

Part I

- Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks Part II
- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions


1. Presentation

- Prof. in Innovation studies at Circle (Lund University) until august
 2016
 - Head of the research platform on globalization of innovation
- Currently
 - Prof. in Innovation studies at Economic history, LUSEM, Lund University
 - Research group on Globalization, Innovation and Sustainability
- Main research topic
 - Globalization of innovation
 - Innovation in emerging economies and developing countries
 - Innovation policy

PART I GENERAL OVERVIEW OF CHANGES AND OUTWARD INNOVATION NETWORKS

The question

Why should you care about globalization of innovation? i.e. Is Globalization of innovation old wine in new bottles or something really new?

2. Background

- Innovation networks have become truly global (UNCTAD, 2005)
 - Increased globalization in parallel with a growing role of certain regions around the world
 - Global innovation networks pinned down to certain regions around the globe
- Suggests that regional dynamics affect and are affected by global innovation networks
 - How??

2. Background Globalization of innovation as a research field

Extremely fragmented literature

- Economic Geography
 - Concept: Globally distributed knowledge bases;
- International business
 - C: Internationalization of R&D, offshoring of R&D
- Innovation studies
 - C: Techno-globalism; Global innovation networks
- Development studies
 - C: Global value chains

2. Background

- What we know about internationalization/globalization of innovation...
 - Innovation has long been an international

SO, WHAT HAS CHANGED?

- Internationalization of innovation towards South is more related to adaptation to markets (D) than to development of new products or services (R)
- Internationalization of innovation hollow out

Outline

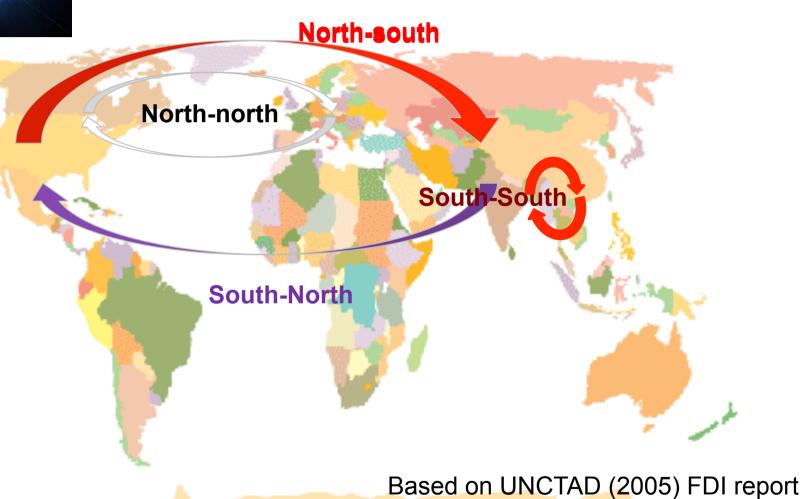
Presentation

Part I

- 2. Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks Part II
- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions

What has changed is (at least):

- 1. The **geography** of the flows: from innovation within the Triad (Japan, US, Europe) to global innovation (China, India)
- 2. The **nature** of innovative activities, particularly in some emerging economies: from D to R
- 3. The **actors**, from large multinational companies, to SMEs and standalone


- Analysis presented today is based on
 - Survey: INGINEUS database (survey in 9 countries in Europe & BICS)
 - Secondary data: fDi markets data –
 Financial Times, All greenfield
 investments, mergers and acquisitions
 and minority investments from MNEs
 from emerging countries (EMNEs)
 - Interviews: Firm-based interviews in China, India and Europe
- o 2 mechanisms
 - Cross border R&D investments greenfield FDI
 - Global research collaboration

Changing geography

Changing geography Offshoring of R&D, by destination

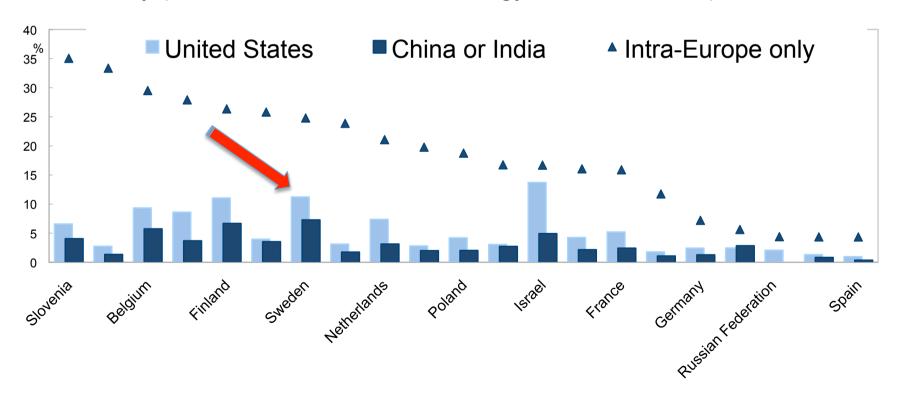
Cross-border investment projects in R&D-related and manufacturing activities, by country of destination (January 2003 - August 2012)

Design, development and							
Testing		R&D		Manufactur	ing		
Rank Country	%	Rank Country	%	Rank Country	%		
	share		share	,	share		
1 India	20.3%	1 China	16.9%	1 China	16.3%		
2 China	12.8%	2 India	14.7%	2US	9.1%		
3 US	7.9%	3 US	7.9%	3 India	6.1%		
4 UK	6.6%	4 UK	5.9%	4 Russia	4.3%		
5 Germany	3.5%	5 Singapore	4.8%	5 Brazil	3.5%		
22 Sweden	1.0%	27 Sweden	0.7%	43 Sweden	0.4%		
Total	100%	Total	100%	Total	100%		
	(3980)		(3162)		(30554)		
Top 5	51.2%	Top 5	50.2%	Top 5	39.3%		
Top 20	78.7%	Top 20	83.4%	Top 20	73.5%		

Source: Castelli and Castellani (2013)

Changing geography Offshoring of R&D, by origin

Cross-border investment projects in R&D-related and manufacturing activities,


by country of origin (January 2003- August 2012)

Design Development	& Testing		R&D			Manufacturing	
Rank Country	% share	Rank	Country	% share	Rank	Country	% share
1 US	45.3%	1	US	42.7%	1	US	17.6%
2 Germany	9.7%	2	Germany	9.1%	2	Japan	14.2%
3 UK	7.0%	3	Japan	8.0%	3	Germany	12.1%
4 Japan	6.9%	4	France	5.2%	4	France	5.5%
5 France	5.5%	5	UK	5.1%	5	UK	4.7%
6 India	3.3%	6	Switzerland	3.8%	6	Italy	3.5%
7 Switzerland	2.9%	7	China	3.1%	7	Switzerland	3.4%
8 Netherlands	2.1%	8	South Korea	2.5%	8	South Korea	3.1%
9 Canada	1.9%	9	Netherlands	2.4%	9	Netherlands	2.6%
10 Sweden	1.3%	10	Canada	2.2%	10	Taiwan	2.3%
11 China	1.3%	(11	India	2.1%		Canada	2.3%
12 Spain	1.2%	12	Sweden	1.8%		Spain	2.3%
13 Finland	1.2%	13	Finland	1.3%	13	China	2.1%
14 South Korea	1.1%	14	Italy	1.2%	14	Sweden	2.1%
15 Denmark	0.9%	15	Denmark	1.2%	15	India	2.0%
Other countries	8.50%		Other countries	8.40%		Other countries	2.0%
Total	100%		Total	100%		Total	100%
	(3980)			(3162)			(30,554)

Changing geography Research collaboration

 OECD firms engaged in international research collaboration by partner country (OECD, Science and Technology indicators, 2012)

Changing actors

 And this in not only a "large firm" phenomenon...
 In Sweden 19% of the innovative firms with less than 50 employees that collaborate for innovation, do so with Chinese and Indian partners

	Total	Sweden	Other Europe	USA	China and India	Other	16% in 2010-2012
10-49 employees	30	95	54	24	19	14	
50-249 employees	36	99	72	28	21	19	
More than 250 employees	62	98	83	50	40	36	

Source: Swedish innovation survey (2012-2014)

http://www.statistikdatabasen.scb.se

Changing actors

- Developing countries are playing a much more important role in these global innovation networks (Barnard and Chaminade, 2012)
 - Based on firm-based survey in European and middle-income countries (9 european and BRICS)
 - Firms involved in research collaboration networks that are highly global, networked and innovative
 - Mainly standalone firms (!)
 - Mainly SMEs (between 50-250 employees)
 - Mostly located in middle-income countries

Changing nature

Cross-border R&D investments by country of destination and type of investment (2003-2011). Selection of industries

	Design, De	velopment and				
	Testing		R&D			
					Total DDT	Total R&D
	China (%)	India (%)	China (%)	India (%)	(number)	(number)
ICT & Electronics	12.57	26.475	17.60	20.03	1949	1148
Life sciences	11.94	12.313	8.60	10.62	268	744
Transport Equipment	14.66	12.931	21.56	13.13	464	320
Physical Sciences	22.61	18.261	33.57	10.00	115	140
Creative Industries	6.99	11.397	20.83	16.67	272	72
En∨ironmental Technology	8.60	6.452	13.86	6.93	93	101

Source: Chaminade et al (2013)

- What we know about internationalization/globalization of innovation...
 - Innovation has long international phenomenon but global one
 - The majority of R&D is conducted close to headquarters
 - When internationalized is usually in neighbor countries (within EU, for example)
 - Globalization of interpretation is associated almost exclusively to large nationals
 - Internationalization of innovation towards South is more related to account on to markets (D) than to development of new products or services (R)

o Is Globalization of innovation something really new?

IMPACT OF OUTWARD GLOBAL INNOVATION NETWORKS

o What are the advantages of going global for innovation?

Outline

Presentation

Part I

- 2. Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks Part II
- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions

4. Impact of outward global networks - Collaboration

- Reseach collaboration and offshoring of innovation (FDI) globally is related to new to the world innovations (Chaminade and Harirchi, 2014; Plechero and Chaminade, 2016a)
 - And this is valid also for SMEs (Aslensen and Harirchi, 2013)
 - This is particularly the case for market partners, no matter where are they located!

- In general, R&D offshoring is associated with higher productivity growth in EU regions (Pieri and Castellani, 2013)
- Innovation abroad complements innovation at home!
 - Complementary effect and NOT substitution effect as when production is offshored

- The impact varies significantly depending on country of destination (Pieri and Castellani, 2013)
 - Effect is larger if R&D offshoring to South-East Asia
 - Positive if offshoring to China
 - Significantly lower productivity growth rates in regions offshoring R&D to India

- Possible explanation: combination of country and sector specificities (Pieri and Castellani, 2013)
 - R&D offshoring to South-East Asia concentrated in high-tech manufacturing (43% of all R&D projects)
 - R&D towards India concentrated in knowledge intensive services
 - Orchestrating value chain in knowledgeintensive activities (services) more complex than in manufacturing (Mudambi and Venzin, 2010)

A look into Sweden

Cross border R&D investments in Sweden (2003, 2011)						
	•	elopment and ting	R&D			
	EU 27	Sweden	EU 27	Sweden		
EU15	21.3%	22.7%	27.4%	25.0%		
Developed (US, Canada, Japan)	18.7%	17.0%	19.9%	9.4%		
South-East Asia	7.6%	2.3%	9.0%	3.1%		
China	11.2%	13.6%	13.5%	28.1%		
India	13.7%	15.9%	8.3%	18.8%		
TOTAL (number projects)	1560	88	725	32		

(Chaminade et al, 2015)

IMPACT

- o What are the advantages of going global for innovation?
 - Breakthrough innovations
 - Higher productivity in the region

DRIVERS OF OUTWARD GLOBAL INNOVATION NETWORKS

o Ok, so if going global has a positive impact, what does it take?

Outline

Presentation

Part I

- Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks

Part II

- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions

- o GIN dynamics are affected by:
 - Type of innovation and lifecycle of the innovation project (Moodysson, 2008; Herstad et al, 2014)
 - Industry lifecycle (Chen et al, 2014; Balland et al, 2013)
 - Firm based characteristics (size, age) (Powell et al, 1996) – liability of newness or outsidership
 - Region

- Network dynamics are affected by:
 - Type of innovation and lifecycle of the innovation project (Moodysson, 2008; Herstad et al, 2014)
 - Industry lifecycle (Chen et al, 2014; Balland et al, 2013)
 - Firm based characteristics (size, age) (Powell et al, 1996) – liability of newness or outsidership
 - Region

Firms' internal competences are significant and positively related to global research collaboration and R&D offshoring

Global Research Collaboration Employees with postgraduate degree (SE)

R&D employees (SE)

Diversity of the labor force (SE)!!

Intramural R&D (SE)

Sophistication of machinery and equipment

Own technological capabilities (R&D, machinery, human capital)

Offshoring of innovation

Advanced production systems (SE) (just in time production, quality systems...)

Source: Plechero and Chaminade (2016a), Grillitsch and Chaminade (2016)

Process innovations

- Network dynamics are affected by:
 - Type of innovation and lifecycle of the innovation project (Moodysson, 2008; Herstad et al, 2014)
 - Industry lifecycle (Chen et al, 2014; Balland et al, 2013)
 - Firm based characteristics (size, age) (Powell et al, 1996) liability of newness or outsidership
 - Region

- Role of the region in the propensity to engage in global innovation networks
 - Direct effect
 - Organizational thickness
 - Specialization
 - Industrial structure
 - Indirect effect
 - Firm capabilities

5. Drivers of outward global innovation networks

Understanding how regions affect GINs - Direct effect

- 1. **Organizational thickness** of a region affects engagement in GINs
 - Firms located in regions that are neither organizationally too thick nor too thin are those that engage more in GINs (Tödling et al, 2011; Plechero and Chaminade, 2015) – compensation mechanism
 - Increasingly innovation is occurring outside the urban agglomerations (Rodriguez –Pose and Wilkie, 2015)

5. Drivers of outward global innovation networks

Understanding how regions affect GINs - Direct effect

- 2. Regional **specialization** affects engagement in GINs
 - Higher specialization, more importance of regional linkages (Plechero and Chaminade, 2016b)

5. Drivers of outward global innovation networks Understanding how regions affect GINs - Direct effect

- 3. Industrial structure of the region affects engagement in GINs (Ebersberger et al, 2014; Martin, 2011)
 - Regions specialized in industries dominated by scientific knowledge-bases engage more in international networks

5. Drivers of outward global innovation networks Understanding how regions affect GINs - Indirect effect

Regions affect the innovative capabilities of local firms

- Firms own knowledge reservoir and innovative performance is influenced by regional framework conditions (Srholec, 2008)
- Firms with strong in-house capabilities can use international networks to compensate for a weak RIS (Grillitsch and Nilsson, 2015; Rodriguez-Pose and Fitzar, 2014)

DRIVERS OF OUTWARD GLOBAL INNOVATION NETWORKS

- o Ok, so if going global has a positive impact, what does it take?
 - Internal competences
 - Qualified and diverse labor force
 - Location, location, location
 - Thick regions local networks more likely
 - Thin regions global networks more likely
 - BUT globalization is complex competences needed

And now...time to refuel the brain!

Second part coming soon...

PART II

INWARD GLOBAL INNOVATION NETWORKS – INWARD FLOWS TO EUROPE

Outline

Presentation

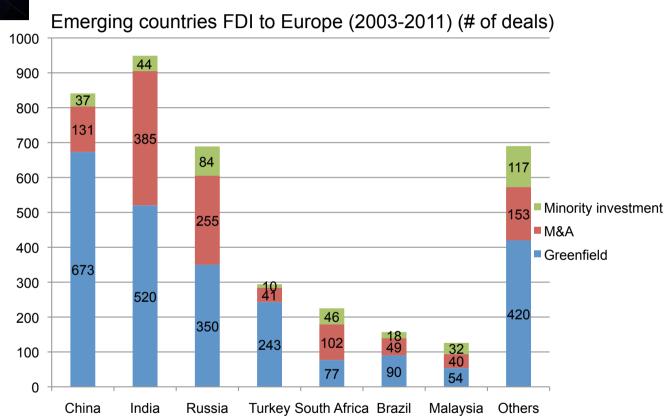
Part I

- Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks Part II
- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions

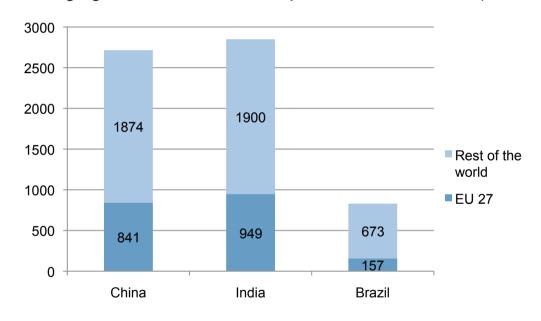
Technology-Driven FDI by Emerging Multinationals in Europe

REPORT

EDITOR: CRISTINA CHAMINADE | CIRCLE | LUND UNIVERSITY

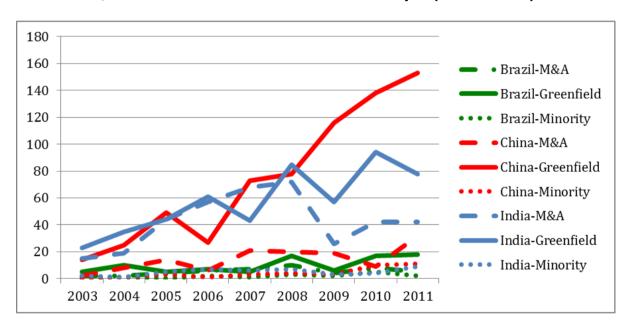

Source of data:

ALL investments by emerging Multinationals in Europe from 2003-2011 – fDi Markets



Source: Chaminade et al (2015) based on Fdl Markets

Emerging countries FDI to Europe & rest of the world (2003-2001) (# of deals)



Source: Chaminade et al (2015) based on Fdl Markets

Chinese, Indian and Brazilian FDI to Europe (2003-2011)

Source: Chaminade et al (2015) based on Fdl Markets

(Chaminade et al, 2015)

- o Why do EMNEs invest in Europe?
 - To access intangible assets (i.e. technology, knowledge, brands, commercial networks)
 - To generate knowledge
 - To exploit economies of scale and scope
 - To gain legitimacy and reputation
- o How do EMNEs invest in Europe?
 - Greenfield investments are the preferred mode of entry
 - Acquisitions are preferred when the objective is (rapidly) acquiring technological competences

Outline

Presentation

Part I

- 2. Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks Part II
- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions

The question

o What about technology driven foreign direct investment in Europe...will they buy our companies, copy the technology and closing them down?

"The asset stripping syndrome"

7. Impact of inward innovation flows

(Chaminade et al, forthcoming)

Method

- Comparative analysis of 6 MNES from China and India
- o 8 technology driven investments in Europe
- Selection of cases
 - Purposive sample from EMENDATA
 - At least one greenfield and one acquisition
 - Not largest ones
 - Operating in a similar subsector
- Data collection
 - Semi-structured interviews with CEO in headquarter and subsidiaries

7. Impact of inward innovation flows (Chaminade et al, forthcoming) Cases

- Auto1: Indian car manufacture. Acquisition TFDI in emission control followed by greenfield
- ICT1: Indian ICT service provider. Multiple TFDI in Europe (acquisitions).
- ICT 2: Indian Telecommunication company. Two TFDIs in Europe (acquisitions)
- ICT3: Indian Telecommunication service provider. Two TFDIs in Europe (acquisitions)
- CLEANT1: Chinese wind turbine. Greenfield TFDI in Europe
- CLEANT2: Indian wind turbine. Greenfield and acquisition TFDI Europe.

7. Impact of inward innovation flows

o 4 possible outcomes

- Asset stripping: Purchase of a company because of the IP and then close down
- Asset withering: Purchase of a company and IP and failure to maintain tech capabilities
- Asset maintenance: Purchase of a company and IP and maintenance of level of tech capab.
- Asset development: Purchase of a company or greenfield and development of technological capabilities

7. Impact of inward innovation flows

- No generalized predatory behavior! (in line with Giuliani et al, 2016)
 - Asset stripping is the exception, not the rule
 - Complementarities exist (technology, capital, customer base)
- Subsidiary's degree of autonomy matters
 - Technology strategy
 - Clients, procedures, networks
- Time matters
- EMNEs more likely to create win-win situations than MNEs from advanced countries (AMNEs) (Giuliani et al, 2014)

The question

o What about technology driven foreign direct investment in Europe...will they buy our companies, copy the technology and closing them down?

"The asset stripping syndrome"

7. Impact of inward innovation flows

...and more findings

(Chaminade et al, 2015)

- Management has a great influence on impact
 - Awareness of cultural differences HQ-S
 - Awareness of gap between technical competences of subsidiary and HQ
 - Autonomy needed
 - Awareness of gap between dedicated customer base of subsidiary and global base of the HQ
 - Awareness of importance of local networks

Outline

Presentation

Part I

- 2. Background
- 3. Overview of changes
- 4. Impact of outward global innovation networks
- 5. Drivers of outward global innovation networks Part II
- 6. Overview of inward global innovation networks
- 7. Impact of inward global innovation networks
- 8. Conclusions

8. Conclusions & policy implications The questions

- 1. Why should you care about globalization of innovation? i.e. is Globalization of innovation old wine in new bottles or something really new?
- 2. What are the advantages of going global for innovation?
- 3. What does it take to globalize innovation activities?
- 4. What about the foreign investments in our region? Will the impact be negative?

The questions

- 1. Why should you care about globalization of innovation?
 - The geography and nature of the internationalization of R&D and other innovation activities is changing
 - Internationalization of innovation activities is no longer a phenomenon exclusive of large firms (SMEs still marginal, but growing)
 - Sweden is one of the EU countries with the highest engagement in international and global innovation networks – more likely to be influenced by these global changes

8. Conclusions & policy implications

2. What are the advantages of going global for innovation?

- Global research collaboration positively associated with new to the world innovations
- Offshoring of R&D is positively associated with home country region productivity growth
 - Complementing rather than hollowing-out
 - Particularly good for R&D offshoring towards East Asia
 - Caution with R&D offshoring towards India (SWEDEN)

8. Conclusions & policy implications

- 3. What does it take to globalize innovation activities?
 - Access to competences is critical, particularly for those firms that need or want to internationalize
 - Technological capabilities (hard)
 - Management techniques for international business and cross-cultural communication (soft)
 - Diversity of the workforce
 - Mobility of highly skilled human resources (smart use)
 - The region where the firm is located is key!- complex linkages between global network and regional dynamics

8. Conclusions & policy implications

- 4. What about the foreign investments in our region? Will the impact be negative?
- o No generalized predatory behavior!
- EMNEs more likely to create win-win situations than MNEs from advanced countries (AMNEs)
- Autonomy, knowledge of the business and managerial capabilities are key

THANKS!!! TACK SÅ MYCKET!!!

So, if you have NOT been browsing funny cat videos during the presentation...

ANY QUESTIONS?

Itchy to know more? Original publication sources

- Plechero, M.; Chaminade, C. (2016a). Spatial Distribution of Innovation Networks, Technological Competencies and Degree of Novelty in Emerging Economy Firms. <u>European Planning Studies</u>. http://www.tandfonline.com/doi/full/10.1080/09654313.2016.1151481
- Plechero, M.; Chaminade, C. (2016b). The role of regional sectoral specialisation on the geography of innovation networks: a comparison between firms located in regions in developed and emerging economies. <u>Int. J. of</u> <u>Technological Learning, Innovation and Development</u> (IJTLID), Vol 8 (2), pp. 148-171.
- Chaminade, C.; de Fuentes, C. (2015) Who are the world leaders in innovation? Exploring the changing role of firms in emerging economies. <u>Int. J. of Technological Learning, Innovation and Development</u> (IJTLID). Vol 7 (4), pp. 279- 302.
- Plechero, M; Chaminade, C. (2015) M. Do Regions Make a Difference? Regional Innovation Systems and Global Innovation Networks in the ICT Industry. <u>European Planning Studies</u>. Volume 23, Issue 2, February 2015, pages 215-237
- Chaminade, C. (2015) (Ed) <u>Technology driven FDI by Emerging MNEs in Europe</u>. Lund: Media Tryck.
- Chaminade, C.; Castellacci, D.; Plechero, M. (2014) <u>The emergence of China and India as new innovation power houses- threat or opportunity</u>?. Stockholm. Entreprenörskapförum.
- Harirchi, G.; Chaminade, C. (2014) Exploring the relation between the degree of novelty of innovations and user-producer interaction across different income regions. <u>World Development</u>, vol 57, pp. 19-31.

www.cristinachaminade.net

Cristina.chaminade@ekh.lu.se

