Green Innovations

Presentation at ESBRI seminar 081014

Staffan Laestadius

Prof. of Industrial Dynamics

Dept. of Ind. Econ. & Mgmt

ROYAL INSTITUTE OF TECHNOLOGY

Structure of the presentation

- A The challenge
- B Industrial and technical implications
- C Perspective on innovations
- D Green innovations
- E Short conclusion

A The Challenge: Climate Change

- Let us be clear this is not a seminar on global warming
- I am professor in industrial dynamics - not in meteorology or geophysics
- CC is probably the most important condition/ challenge for economic/ industrial activity for the decades ahead
- Part of the solution is in cleantech/green innovations

Climate Change, contd –

sources & structure for/of this section

Sources:

- Stern, Nicholas, 2006, The Economics of Climate Change, Cambridge
- IPCC, AR4 Reports 2007
- SMHI
- Global Carbon Project
- Structure
 - symptoms
 - mechanisms

1 Some of the symptoms

- Temperature increases
- Sea cover decreases
- Glaciers and frozen ground are receding
- Drought increases
- Sea level increases
- •

Temperature anomaly 1/1 - 10/10 2008

Arctic sea cover

• 2008 – next lowest registered

2 The mechanisms

Annual fossil CO₂
 emissions increased from
 an average of 6.4 GtCper
 year in the 1990s, to 7.2
 GtC per year in 2000-2005

Human and Natural Drivers of Climate Change

CO₂, CH₄ and N₂O Concentrations

- far exceed pre-industrial values
- increased markedly since 1750 due to human activities

Relatively little variation before the industrial era

A shorter time perspective

Year 2007 Atmospheric CO₂ concentration:

383 ppm 37% above pre-industrial

1970 – 1979: 1.3 ppm y⁻¹

1980 – 1989: 1.6 ppm y¹

1990 – 1999: 1.5 ppm y⁻¹

2000 - 2007: 2.0 ppm y⁻¹

2007: 2.2 ppm y⁻¹

B Industrial and technical implications

- Climate challenge: reduce CO2 emissions with at least 80 %. We can argue on the time horizon (2030, 2050, 2070, 2100). Longer time perspective => higher equilibrium temperature.
- Increase/restore economic activity after the crisis
- In short: doing it in another way =>
- => GREEN INNOVATIONS

Interpretations I

- the domains for change

Interpretation II

- Half of half and half of that
 - i.e.reduction to approx 10 20% of present emissions
- A systems perspective
 - Reduce systems activity first half
 - Increase systems efficiency second half
 - Additional innovative behaviour third half
- An illustration
 - Reduce car use 10000 km => 4000 km (=> on other systems!!)
 - Reduce fuel consumption 0.8 => 0.4 l/10 km
 - But that is not enough!!!

Interpretation III

- Low hanging fruits (LHF) maybe half??
 - Technology fix
 - Incremental innovations
 - Fine tuning
- High hanging fruits far reaching innovations!

C Perspective on Innovation – back to basics

- Innovation = new (creative) combinations of phenomena which may be old or recently learned/developed/invented
- New combinations = markets, technologies, artefacts, raw materials, work organization, architectures
- Entrepreneur = the introducer of innovations this is the classic Schumpeterian use of the term!
- (there are no innovators that concept reduces the role of the entrepreneur!!)
- The Henderson-Clark perspective
- The development bloc perspective
- The salient reverse salient perspective

Linkages between core concepts and components

Unchanged

Changed

The structure of innovations – Henderson - Clark

Core concepts

Reinforced Overturned

Incremental innovation	Modular innovation
Architectural innovation	Radical innovation

19

Dahmén - and Hughes!

- Erik Dahmén's development bloc (industrial focus)
 - Systems imbalances
 - Opportunities
 - Necessities
- Thomas Hughes' (on technologies)
 - Salients
 - Reverse salients
 - Critical problems
- The non equilibrium dimension

D Green innovations

- a all cleantech does not classify as GI
- b LHF HHF
- c Need for more R&D?
- d Need for institutional innovations?
- e Need for life style innovations?
- f Departing from the complexity path?

a) green innovations– all cleantech does not qualify

- small footprint in itself (first order impact)
- significant reduction of footprints in/from other systems (second order impact)
- contribute to global long term reduction of footprint (third order impact)

b) LHF - HHF

- LHF typically
 - incremental innovations
 - some architectural
 - some modular
- HHF typically
 - radical (shift of system, paradigm)
 - some architectural
 - some modular

c) Need for more R&D?

- The Schumpeterian perspective
 - We "know" a lot already
 - There are many low hanging fruits
 - We know enough for "new and creative combinations"
 - Not allow GI:s to be delayed while waiting for the best of all worlds!
 - R&D is always needed more in some sectors than in others.

d) Need for institutional/policy innovation?

- We have advanced tool boxes already
- Activating existing tools rather than waiting for new ones
 - Target levels
 - Limit levels
 - Taxes, fees, subsidies etc
- Simplifying regulation
- Too cheap to emit CO2 2nd & 3rd order GI necessitates more policy!

e) Need for life style innovations?

- Shopping/consumption styles
- Innovations in family related logistics
- Housing styles
- Vacancy styles
- Non-technical innovations
- Our understanding of modernity!

f) Departing from the complexity path?

- Are green machines more or less complex?
- Do incremental GI:s lead towards more complexity?
- Do radical GI:s lead towards reduced complexity?
- The systemic dimension
 - the persistence of old systems
 - lubricating (supplementary) innovations often small
 - the complexity of the catalytic converter (David Bauner)

E Short conclusion

- A gigantic global challenge: > 80% CO2 reductions
- Half of half & half of that
 - Systems activity
 - Systems performance
 - The third reduction
- Incremental innovations not enough => radical innovations necessary
- We know a lot of the technologies already => nontechnological innovations necessary to open for the alternatives
- Need for policy

Thank you for listening!

Staffan Laestadius

Prof. of Industrial Dynamics
Dept. of Ind. Econ. & Mgmt
staffan.laestadius@indek.kth.se

ROYAL INSTITUTE OF TECHNOLOGY